China best High Speed Long Life Low Noise Plastic Nylon Gear for Transmission Motor Toy worm and wheel gear

Product Description

 

Detailed Photos

 

Product Description

Our precision deep groove ball bearings are designed for high precision, low noise, small vibration, high reliability and long life. They are mainly used in various types of electric motors. They are also known as EMQ (Electric Motor Quality) bearings.
 EMQ bearings are widely used in household appliances, toys, electric power tools, car motors and other fields. With optimal design, high reliability heat treatment, precision manufacturing processes and high-grade grease, these products perform better on reliability, vibration and noise levels than standard products making them more suitable for electric motor applications. These products can also be applied to most gearbox applications as well.

Item  Plastic Product Closure type  ZZ/RS
OEM ODM  Technical drawing or sample is needed d(mm) 8
Original  ZheJiang , China D(mm) 28
Material  Chrome steel, Carbon steel, Stainless steel, etc. B(mm)  9
Cage Material  Steel / Nylon Number of row  single
Tolerance  P0 P6 P5 P2 P4 Clearance  C0 C2 C3 C4
Vibration  V1 V2 V3 Noise  Z1 Z2 Z3 Z4
MOQ 1000 pcs Application  Motor/electric/sliding/furniture accessories/
 Skateboard/etc.
Feature heavy-duty,adjustable,low noise, easy installation,sliding smoothly,long life,standard,customized,etc Leading Time According to the order q’ty

Company Profile

 

ABOUT US

Haibite was set up in 1996 and located at HangZhou, a beautiful city in China, covering an area of 16000 square meters. Our company is bearing manufacturer&bearing distributor. 

We have own factory that specialize in the production of bearings. We are in a good position to supply you high quality bearing, the finest price and customized service.
Since it was first established, CHINAMFG was dedicated in research, development and manufacture of bearings.

Haibite deep groove ball bearing has numerous technical advantages, such as increased service life of bearing over a broad of operating temperature and all these combined with the highest level of cost effectiveness. 

Now, CHINAMFG has become main and 1 of the first grade suppliers of all kinds of bearings. We could develop the products constructed from different materials, structures, shapes, colors etc.
 

1. Our bearing are in stable quality with smooth rotation, long life operation, small movement, advanced heat treatment etc.

2. The Balls with smooth and long lasting operation, higher performing features like wider adjustment ranges, long rolling life performance, easy installment. It’s adapt in multiple housing choices with any wheels to fit different aluminnum. Our bearing ensure alignment across the full adjustment ranges within built-in retention system.

3. If you need, we also could offer customized hardware service, like plastic parts, stamping patrs, cold forging steel patrs are widely applied in the window and doors, furniture, householders, transmission system, industrial drive system etc.

We are constantly improving and striving for excellent service. We hold a very high regard for our customers, the quality of our products, and our level of customer service.

Packaging & Shipping

Packaging Details
Packaging 
A.Polybag +Box+Carton 
B.B.Tube+Box+Carton 
C.As per customer’s request 
We have kinds of packages, such as plastic bags, cartons, special boxes. We use different packages based on the products and our customers’ requirements.
Port :HangZhou

 

Our Advantages

 

FAQ

If you have any other questions, please feel free to contact us as follows.

 

Q: Why did you choose us?

A. We provide the best quality bearings with reasonable price, low friction, low noise and long service life.

B. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.

C. The best service provided by a well-trained international sales team.

 

Q: Do you accept small orders?

100% quality check, once your bearings are standard size bearings, even one, we also accept.

 

Q: Do you provide samples? Is it free or extra?

Yes, we can provide a small amount of free samples. Do you mind paying the freight?

 

Q: What should I do if I don’t see the type of bearings I need?

We have too many bearing series numbers. Sometimes we can’t put them all on web. Just send us the inquiry and we will be very happy to send you the bearing details.

Q: What services can we provide?
Accepted Delivery Terms: FOB, CFR, CIF, EXW;
Accepted Payment Currency: USD, EUR, JPY, CNY;
Accepted Payment Type: T/T, L/C, D/P, D/A
Language Spoken: English, Chinese;

 

 

Purchase Notice

1. Please send us an inquiry or leave us a message, there will be a dedicated staff to serve you within 1 hours.
2. You can ask us to take actual photos of the products for you, and free samples would be provide.
3. Welcome to visit our factory to negotiate orders, we will do our best to protect the safety of your business journey.
4. Packaging can be customized according to customer requirements.
Finally, please be sure to click “Contact Supplier” to contact us, or “call us” with any questions that you may have.

Welcome to contact me anytime!
 

Shipping Cost:

Estimated freight per unit.



To be negotiated
Aligning: Aligning Bearing
Separated: Unseparated
Rows Number: Single
Samples:
US$ 0.25/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

plastic gear

How do you choose the right type of plastic material for specific applications?

Choosing the right type of plastic material for specific applications requires careful consideration of various factors. Here’s a detailed explanation of the process:

1. Identify Application Requirements: Begin by understanding the specific requirements of the application. Consider factors such as temperature range, chemical exposure, mechanical stress, electrical properties, dimensional stability, and regulatory compliance. This initial assessment will help narrow down the suitable plastic material options.

2. Research Plastic Material Properties: Conduct thorough research on different types of plastic materials and their properties. Consider factors such as mechanical strength, thermal stability, chemical resistance, electrical conductivity, impact resistance, UV stability, and food safety approvals. Plastic material datasheets and technical resources from manufacturers can provide valuable information.

3. Evaluate Material Compatibility: Assess the compatibility of the plastic material with the surrounding environment and other components in the system. Consider the potential for chemical reactions, galvanic corrosion, thermal expansion, and any specific requirements for mating surfaces or interfaces. Ensure the selected material is compatible with the intended operating conditions.

4. Consider Manufacturing Process: Evaluate the manufacturing process involved in producing the desired component or product. Different plastic materials may have specific requirements or limitations for processes such as injection molding, extrusion, blow molding, or machining. Ensure the chosen material is compatible with the selected manufacturing method and can meet the desired quality and production efficiency.

5. Assess Cost and Availability: Consider the cost and availability of the plastic material. Some specialty or high-performance plastics may be more expensive or have limited availability compared to more common materials. Evaluate the cost-effectiveness and feasibility of using the selected material within the project’s budget and timeline.

6. Consult with Material Experts: If necessary, consult with material experts, engineers, or suppliers who have expertise in plastic materials. They can provide valuable insights and recommendations based on their experience and knowledge of specific applications. Their input can help ensure the optimal material selection for the intended use.

7. Perform Prototype and Testing: Before finalizing the material selection, it’s advisable to produce prototypes or conduct testing using the chosen plastic material. This allows for verification of the material’s performance, dimensional accuracy, strength, durability, and other critical factors. Iterative testing and evaluation can help refine the material selection process if needed.

By following these steps and considering the application requirements, material properties, compatibility, manufacturing process, cost, and expert advice, it’s possible to choose the most appropriate plastic material for specific applications. Proper material selection is crucial for ensuring optimal performance, longevity, and safety in various industries and products.

plastic gear

What is the impact of temperature variations on plastic gears?

Temperature variations can have a significant impact on plastic gears. Here’s a detailed explanation of their effects:

1. Thermal Expansion: Plastic gears can experience thermal expansion or contraction with changes in temperature. Different types of plastics have varying coefficients of thermal expansion, meaning they expand or contract at different rates. This can result in dimensional changes, which may affect the gear’s meshing, clearance, and overall performance. It’s important to consider the thermal expansion characteristics of the specific plastic material used in the gear design.

2. Material Softening or Hardening: Plastic materials can exhibit changes in mechanical properties with temperature variations. In general, as temperature increases, plastic materials tend to soften and become more flexible, while at lower temperatures, they can become stiffer and more brittle. These changes can impact the gear’s load-bearing capacity, wear resistance, and overall durability. It’s crucial to select plastic materials that can maintain their mechanical integrity within the expected temperature range of the application.

3. Dimensional Stability: Plastic gears may experience dimensional changes or warping due to temperature fluctuations. Higher temperatures can cause plastic materials to deform, leading to misalignment, increased backlash, or reduced gear accuracy. Conversely, lower temperatures can cause contraction, resulting in tight clearances, increased friction, or gear binding. Proper design considerations, including material selection and gear geometry, can help mitigate the impact of temperature-induced dimensional changes.

4. Lubrication and Wear: Temperature variations can affect the lubrication properties of plastic gears. Higher temperatures can cause lubricants to degrade or become less effective, leading to increased friction, wear, and potential gear failure. Similarly, low temperatures can cause lubricants to thicken or solidify, hindering proper lubrication and increasing wear. Selecting lubricants suitable for the anticipated temperature range and periodic maintenance can help ensure proper lubrication and minimize wear on plastic gears.

5. Cold Flow and Creep: Some plastic materials, especially those with lower glass transition temperatures, may exhibit cold flow or creep at elevated temperatures. Cold flow refers to the gradual deformation or flow of plastic material under constant stress, while creep refers to the time-dependent deformation under a constant load. These phenomena can cause changes in gear geometry, tooth profile, or tooth engagement over time, potentially affecting gear performance and functionality. Understanding the material’s creep and cold flow characteristics is important when selecting plastic gears for applications exposed to temperature variations.

6. Impact on Lubricants and Seals: Temperature variations can also impact the performance of lubricants and seals used in gear systems. Extreme temperatures can cause lubricants to break down, lose viscosity, or leak from the gear assembly. Seals and gaskets may also be affected, leading to compromised gear housing integrity or increased friction. It’s crucial to consider temperature compatibility and select appropriate lubricants and seals that can withstand the anticipated temperature range.

In summary, temperature variations can significantly impact plastic gears by causing thermal expansion, material softening or hardening, dimensional changes, lubrication issues, cold flow or creep, and effects on lubricants and seals. Proper material selection, design considerations, and understanding the anticipated temperature range are essential to ensure the reliable and optimal performance of plastic gears in various applications.

plastic gear

Are there different types of plastic materials used for making gears?

Yes, there are different types of plastic materials used for making gears. Here’s a detailed explanation of some commonly used plastic materials in gear manufacturing:

  • Acetal (Polyoxymethylene – POM): Acetal is a popular choice for gear applications due to its excellent strength, dimensional stability, low friction, and wear resistance. It has good machinability and can be easily molded into gears with precise tooth profiles. Acetal gears offer low noise operation and have good resistance to moisture and chemicals. They are commonly used in automotive, consumer electronics, and industrial applications.
  • Polyamide (Nylon): Polyamide or nylon is another widely used plastic material for gears. It offers good mechanical properties, including high strength, toughness, and impact resistance. Nylon gears have low friction characteristics, good wear resistance, and self-lubricating properties. They are commonly used in applications such as automotive components, power tools, and industrial machinery.
  • Polyethylene (PE): Polyethylene is a versatile plastic material that can be used for gear applications. It offers good chemical resistance, low friction, and excellent electrical insulation properties. While polyethylene gears may have lower strength compared to other plastic materials, they are suitable for low-load and low-speed applications, such as in light-duty machinery, toys, and household appliances.
  • Polypropylene (PP): Polypropylene is a lightweight and cost-effective plastic material that finds applications in gear manufacturing. It offers good chemical resistance, low friction, and low moisture absorption. Polypropylene gears are commonly used in various industries, including automotive, consumer electronics, and household appliances.
  • Polycarbonate (PC): Polycarbonate is a durable and impact-resistant plastic material used for gears that require high strength and toughness. It offers excellent dimensional stability, transparency, and good resistance to heat and chemicals. Polycarbonate gears are commonly used in applications such as automotive components, electrical equipment, and machinery.
  • Polyphenylene Sulfide (PPS): Polyphenylene sulfide is a high-performance plastic material known for its excellent mechanical properties, including high strength, stiffness, and heat resistance. PPS gears offer low friction, good wear resistance, and dimensional stability. They are commonly used in demanding applications such as automotive transmissions, industrial machinery, and aerospace equipment.

These are just a few examples of the plastic materials used for making gears. The choice of plastic material depends on the specific requirements of the gear application, including load capacity, operating conditions, temperature range, chemical exposure, and cost considerations. It’s important to select a plastic material that offers the necessary combination of mechanical properties and performance characteristics for optimal gear performance.

China best High Speed Long Life Low Noise Plastic Nylon Gear for Transmission Motor Toy worm and wheel gearChina best High Speed Long Life Low Noise Plastic Nylon Gear for Transmission Motor Toy worm and wheel gear
editor by CX 2023-10-08